Skip to main content
Open Book Publishers

12. Genetic Evolutionary Demography

Chapter of: Human Evolutionary Demography(pp. 293–306)

Export Metadata

  • ONIX 3.0
    • Thoth
    • Project MUSE
      Cannot generate record: No BIC or BISAC subject code
    • OAPEN
    • JSTOR
      Cannot generate record: No BISAC subject code
    • Google Books
      Cannot generate record: No BIC, BISAC or LCC subject code
    • OverDrive
      Cannot generate record: No priced EPUB or PDF URL
  • ONIX 2.1
  • CSV
  • JSON
  • OCLC KBART
  • BibTeX
  • CrossRef DOI deposit
    Cannot generate record: This work does not have any ISBNs
  • MARC 21 Record
    Cannot generate record: MARC records are not available for chapters
  • MARC 21 Markup
    Cannot generate record: MARC records are not available for chapters
  • MARC 21 XML
    Cannot generate record: MARC records are not available for chapters
Metadata
Title12. Genetic Evolutionary Demography
ContributorKenneth W. Wachter(author)
DOIhttps://doi.org/10.11647/obp.0251.12
Landing pagehttps://www.openbookpublishers.com/books/10.11647/obp.0251/chapters/10.11647/obp.0251.12
Licensehttps://creativecommons.org/licenses/by/4.0/
CopyrightKenneth W. Wachter
PublisherOpen Book Publishers
Published on2024-06-14
Long abstractSince the 1990s biodemographers comparing demographic schedules across divergent species have highlighted features in common, plausibly reflecting evolutionary influences in common. Optimal life history models and stochastic vitality models garner inspiration from Darwinian theory. Models for genetic load go further, explicitly incorporating natural selection, mutation, and recombination and consequences for genomes. These models draw age-specific demographic implications from assumptions about mutation accumulation. The genetic variants posited by the theory are now coming into observation in genomic data. A search is underway for contemporary effects of genetic load on measures of health, aging, and survival. It may be possible to tell how far an evolutionary heritage from deep in the past persists amid the altered environments of the present, shaping demographic regularities.
Page rangepp. 293–306
Print length14 pages
LanguageEnglish (Original)
Contributors

Kenneth W. Wachter

(author)
Distinguished Professor Emeritus of Demography and Statistics at University of California, Berkeley

Ken Wachter is Distinguished Professor Emeritus of Demography and Statistics at the University of California, Berkeley. From the 1997 volume ‘Between Zeus and the Salmon’ onward, he has been an active contributor to Biodemography and Evolutionary Demography.

References
  1. Adzhubei, I. A., S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova, P. Bork, A. S. Kondrashov, and S. Sunyaev. 2010. ‘A method and server for predicting damaging missense mutations’, Nature Methods, 7.4: pp. 248–49, https://doi.org/10.1038/nmeth0410-248
  2. Barbi, E., F. Lagona, M. Marsili, J. W. Vaupel, and K. W. Wachter. 2018. ‘The plateau of human mortality: Demography of longevity pioneers’, Science, 360.6396: pp. 1459–61, https://doi.org/10.1126/science.aat3119
  3. Buerger, R. 2000. The Mathematical Theory of Selection, Recombination, and Mutation. (Chichester, New York: John Wiley).
  4. Carey, J. R., P. Liedo, D. Orozco, and J. W. Vaupel. 1992. ‘Slowing of Mortality Rates at Older Ages in Large Medfly Cohorts’, Science, 258.5081: pp. 457–61, https://doi.org/10.1126/science.1411540
  5. Charlesworth, Brian. 1994. Evolution in Age-Structured Populations (Cambridge: Cambridge University Press).
  6. —. 2000. ‘Fisher, Medawar, Hamilton, and the Evolution of Aging’, Genetics, 156.3: pp. 927–31, https://doi.org/10.1093/genetics/156.3.927
  7. —. 2001. ‘Patterns of Age-Specific Means and Genetic Variances of Mortality Rates Predicted by the Mutation-Accumulation Theory of Ageing’, Journal of Theoretical Biology, 210.1: pp. 47–65, https://doi.org/10.1006/jtbi.2001.2296
  8. Curtsinger, J. W., H. H. Fukui, D. R. Townsend, and J. W. Vaupel, 1992. ‘Demography of Genotypes: Failure of the Limited Life-Span Paradigm in Drosophila melanagaster’, Science, 258.5081: pp. 461–63, https://doi.org/10.1126/science.1411541
  9. Davydov, E. V., D. L. Goode, M. Sirota, G. Cooper, A. Sidow, and S. Batzoglou. 2010. ‘Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++’, PLoS Computational Biology, 6.12, https://doi.org/10.1371/journal.pcbi.1001025
  10. Evans, Steve N., D. R. Steinsaltz, and K. W. Wachter. 2013. A Mutation-Selection Model for General Genotypes with Recombination, Memoir 222(1044). (Providence, RI: American Mathematical Society) https://doi.org/10.1090/S0065-9266-2012-00662-9
  11. Finch, Caleb. 1990. Longevity, Senescence, and the Genome (Chicago: University of Chicago Press).
  12. Finch, Caleb, J. W. Vaupel, and K. Kinsella (eds.). 2001. Cells and Surveys (Washington, DC: National Academy Press).
  13. Gurven, Michael, and H. Kaplan. 2007. ‘Longevity among hunter-gatherers: A cross-cultural examination’, Population and Development Review, 332.2: pp. 321–65, https://doi.org/10.1111/j.1728-4457.2007.00171.x
  14. Kirkwood, Thomas B. 1977. ‘Evolution of ageing’, Nature, 270.5635: pp. 301–04, https://doi.org/10.1038/270301a0
  15. Kondrashev, Alexey S. 2017. Crumbling Genome: The Impact of Deleterious Mutations on Humans (Hoboken, NJ: Wiley Blackwell), https://doi.org/10.1002/9781118952146
  16. Medawar, Peter. 1952. An Unsolved Problem in Biology: An Inaugural Lecture Delivered at University College, London, 6 December, 1951 (London: H. K. Lewis and Co.).
  17. Smith, David P., and N. Keyfitz (eds.). 2013. Mathematical Demography: Selected Papers, Second Edition ed. by K. W. Wachter and H. LeBras (Berlin: Springer Verlag).
  18. Steinsaltz, David, S. N. Evans, and K. W. Wachter. 2005. ‘A generalized model of mutation-selection balance with applications to aging’, Advances in Applied Mathematics, 35.1: pp. 16–33, https://doi.org/10.1016/j.aam.2004.09.003
  19. Tennessen, Jacob, A., A. W. Bigham, T. D. O’Connor, W. Fu, E. E. Kenny, S. Gravel, S. McGee, R. Do, X. Liu, G. Jun, H. M. Kang, D. Jordan, S. M. Leal, S. Gabriel, M. J. Rieder, G. Abecasis, D. Altshuler, D. A. Nickerson, E. Boerwinkle, S. Sunyaev, C. D. Bustamante, M. J. Bamshad, and J. M. Akey. 2012. ‘Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes’, Science, 337.6090: pp. 64–69, https://doi.org/10.1126/science.1219240
  20. Wachter, Kenneth W. 2014a. Essential Demographic Methods (Cambridge, MA: Harvard University Press), https://doi.org/10.4159/9780674369757
  21. —. 2015. ‘Population heterogeneity in the spotlight of biodemography’ in Population in the Human Sciences: Concepts, Models, Evidence, ed. by P. Kreager, B. Winney, S. Ulijaszek, and C. Capelli (Oxford: Oxford University Press), pp. 131–44, https://doi.org/10.1093/acprof:oso/9780199688203.003.0005
  22. Wachter, Kenneth W. and R. Bulatao (eds.). 2003. Offspring: Human Fertility Behavior in Biodemographic Perspective (Washington, DC: National Academy Press), https://doi.org/10.17226/10654
  23. Wachter, Kenneth W., S. N. Evans, and D. R. Steinsaltz. 2013. ‘The age-specific force of natural selection and biodemographic walls of death’, PNAS, 110.25: pp. 10141–10146, https://doi.org/10.1073/pnas.1306656110
  24. Wachter, Kenneth W., and C. Finch, (eds.). 1997. Between Zeus and the Salmon: The Biodemography of Longevity (Washington, DC: National Academy Press), https://doi.org/10.17226/5740.
  25. Wachter, Kenneth W., D. R. Steinsaltz, and S. N. Evans. 2009. ‘Vital Rates from the Action of Mutation Accumulation’, Journal of Population Ageing, 2.1: pp. 5–22, https://doi.org/10.1007/s12062-009-9015-3
  26. Wachter, Kenneth W., D. R. Steinsaltz, and S. N. Evans. 2014. ‘Evolutionary shaping of demographic schedules’, PNAS, 111.s3: pp. 10846–10853, https://doi.org/10.1073/pnas.1400841111
  27. Weinstein, Maxine, and M. A. Lane (eds.). 2014. Sociality, Hierarchy, Health: Comparative Biodemography (Washington, DC: National Academies Press), https://doi.org/10.17226/18822
  28. Weinstein, Maxine, J. W. Vaupel, and K. W. Wachter (eds.). 2008. Biosocial Surveys (Washington, DC: National Academy Press).