Skip to main content
Open Book Publishers

7. Intuition revived

Export Metadata

  • ONIX 3.1
  • ONIX 3.0
    • Thoth
    • Project MUSE
      Cannot generate record: No BIC or BISAC subject code
    • OAPEN
    • JSTOR
      Cannot generate record: No BISAC subject code
    • Google Books
      Cannot generate record: No BIC, BISAC or LCC subject code
    • OverDrive
      Cannot generate record: No priced EPUB or PDF URL
  • ONIX 2.1
  • CSV
  • JSON
  • OCLC KBART
  • BibTeX
  • CrossRef DOI deposit
    Cannot generate record: This work does not have any ISBNs
  • MARC 21 Record
    Cannot generate record: MARC records are not available for chapters
  • MARC 21 Markup
    Cannot generate record: MARC records are not available for chapters
  • MARC 21 XML
    Cannot generate record: MARC records are not available for chapters
Metadata
Title7. Intuition revived
ContributorOle Skovsmose(author)
DOIhttps://doi.org/10.11647/obp.0407.07
Landing pagehttps://www.openbookpublishers.com/books/10.11647/obp.0407/chapters/10.11647/obp.0407.07
Licensehttps://creativecommons.org/licenses/by-nc/4.0/
CopyrightOle Skovsmose
PublisherOpen Book Publishers
Published on2024-12-11
Long abstractIn the preface to Mathematics as an Educational Task, Hans Freudenthal states that his educational interpretation of mathematics betrays the influence of L. E. J. Brouwer’s view on mathematics. In this chapter we explore the nature of this possible influence. According to Brouwer, intuition plays a crucial role in any form of mathematical construction, which he specifies in terms of mental acts. He finds that mathematics does not have any adequate articulation in language, and that mathematical formalisms are nothing but imprecise and mischievous depictions of genuine mathematical processes. Freudenthal characterises mathematics as a human activity, thereby subsuming the overall intuitionist outlook that Brouwer had condensed into the notion of mental activity. While Brouwer installed intuition in a central position in mathematics, Freudenthal created a vast space for intuition in all kinds of activities in mathematics education. In his writings, Freudenthal does not demonstrate any interest in socio-political issues related to mathematics. Structuralism and the Modern Mathematics Movement are manifestations of the dogma of neutrality, and so is Freudenthal’s formulation of mathematics as a human activity. However, although he does not repudiate a dogma of neutrality, he simultaneously provides ideas that help in formulating a critical mathematics education.
Page rangepp. 149–174
Print length26 pages
LanguageEnglish (Original)
Contributors

Ole Skovsmose

(author)

Ole Skovsmose’s research has addressed landscapes of investigation, dialogue, students’ foreground, inclusive mathematics education, pedagogical imagination, mathematics in action, philosophy of mathematics education, and philosophy of mathematics. He has been professor at Aalborg University, Denmark, but is now associated to State University of São Paulo, Brazil. In 2024, he was awarded the Hans Freudenthal medal.

References
  1. la Bastide-van Gemert, S. (2015). All positive action stars with criticism: Hans Freudenthal and the didactics of Mathematics. Springer.
  2. Bishop, E. (1967). Foundations of constructive analysis. McGraw-Hill.
  3. Brouwer, L. E. J. (1911). Über Abbildungen von Mannigfaltigkeiten [About mappings of manifolds]. Mathematische Annalen, 71, 97–115. https://doi.org/10.1007/BF01456931
  4. Brouwer, L. E. J. (1913). Intuitionism and formalism. Bulletin of the American Mathematical Society, 20(2), 81–96. https://doi.org/10.1090/S0002-9904-1913-02440-6
  5. Brouwer, L. E. J. (1981). Brouwer’s Cambridge lectures on intuitionism (D. van Dalen, Ed.). Cambridge University Press.
  6. Brouwer, L. E. J. (1996). Life, art, and mysticism. Notre Dame Journal of Formal Logic, 37(3), 389–429. https://doi.org/10.1305/ndjfl/1039886518
  7. Cantor, G. (1874). Über eine Eigenschaft des Inbegriffes aller reelen algebraischen Zahlen [About a property of the epitome of all real algebraic numbers]. Journal für die reine und angewandte Mathematik, 77, 258–262. https://doi.org/10.1515/crll.1874.77.258
  8. Dummett, M. (1977). Elements of intuitionism. Clarendon Press.
  9. Freire, P. (1972). Pedagogy of the oppressed. Penguin.
  10. Freudenthal, H. (1931). Über die Enden topologischer Räume und Gruppen. Mathematische Zeitschrift, 33, 692–713. https://doi.org/10.1007/BF01174375
  11. Freudenthal, H. (1973). Mathematics as an educational task. Reidel.
  12. Freudenthal, H. (1978). Weeding and sowing. Reidel.
  13. Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Reidel.
  14. Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Kluwer.
  15. Freudenthal, H., Janssen, G. M., Sweers, W. J., van Barneveld, G. B., Bosman, J. N., van den Brink, F. J., van Bruggen, J. C., Gilissen, L. J. M., Goffree, F., de Gooijer-Quint, J. F., ter Heege, J., Jansen, H. M. M., de Jong, R. A., Kremers, W. H. M., Leenders, C. P., Meijer, G. H., de Moor, E. W. A., Schoemaker, G., Streefland, L., … Wijdeveld, E. J. (1976). Five Years IOWO [Special issue]. Educational Studies in Mathematics, 7(3).
  16. Gödel, K. (1933). Eine Interpretation des intuitionistischen Aussagenkalküls [An interpretation of the intuitionistic propositional calculus]. Ergebnisse eines mathematischen Kolloquiums, 4(39–40), 300–301.
  17. Gravemeijer, K. (1994). Developing realistic mathematics education. CD-ß Press, Freudenthal Institute.
  18. Gravemeijer, K. J., & Terwel, J. (2000). Hans Freudenthal: A mathematician on didactics and curriculum theory. Journal of Curriculum Studies, 32(6), 777–796. https://doi.org/10.1080/00220270050167170
  19. Heuvel-Panhuizen, M. van den. (2015). Freudenthal’s work continues. In C. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 309–331). Springer. https://doi.org/10.1007/978-3-319-17187-6_18
  20. Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik [The formal rules of intuitionist logic]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 42–56, 57–71, 158–169.
  21. Heyting, A. (1957). Intuïtionisme en schoolwiskunde [Intuitionism and school mathematics]. Euclides, 33(1), 1–12.
  22. Heyting, A. (1971). Intuitionism: An introduction. North Holland.
  23. Kant, I. (1973). Critique of pure reason. MacMillan.
  24. Kellogg, R. B., Li, T. Y., & Yorke, J. A. (1976). A constructive proof of the Brouwer fixed-point theorem and computational results. SIAM Journal on Numerical Analysis, 13(4), 473–483.
  25. Kollosche, D. (2017). Entdeckendes Lernen: Eine Problematisierung [Discovery learning: A problematisation]. Journal für Mathematik-Didaktik, 38(2), 209–237. https://doi.org/10.1007/s13138-017-0116-x
  26. Lange, J. de. (1987). Mathematics, insight and meaning. Utrecht University.
  27. Lorenzen, P. (1969). Normative logic and ethics. Bibliographisches Institute.
  28. Lorenzen, P. (1971). Differential and integral: A constructive introduction to classical analysis. University of Texas Press.
  29. Martin-Löf, P. (1968). Notes on constructive analysis. Almquist & Wiksell.
  30. Martin-Löf, P. (1982). Constructive mathematics and computer programming. In L. J. Cohen, J. Los, H. Pfeiffer, & K.-P. Podewski (Eds.), Logic, methodology and philosophy of sciences VI. North-Holland.
  31. Mill, J. S. (1970). A system of logic. Longman.
  32. O’Connor, J. J., & Robertson, E. F. (2003) Luitzen Egbertus Jan Brouwer. https://mathshistory.st-andrews.ac.uk/Biographies/Brouwer
  33. Ravn, O., & Skovsmose, O. (2019). Connecting humans to equations: A reinterpretation of the philosophy of mathematics. Springer. https://doi.org/10.1007/978-3-030-01337-0
  34. Reeves, S., & Clarke, M. (2003). Logic for computer science. Department of Computer Science, Queen May and Westfield College, University of London, and Department of Computer Science, University of Waikato, New Zealand. http://www.cs.ru.nl/~herman/onderwijs/soflp2013/reeves-clarke-lcs.pdf
  35. Rootselaar, B. van. (1957). Intuïtionisme en rekenkunde [Intuitionism and arithmetic]. Euclides, 32(6), 193–198.
  36. Skovsmose, O., & Penteado, M. G. (2016). Mathematics education and democracy: An open landscape of tensions, uncertainties, and challenges. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 359–373). Routledge. https://doi.org/10.4324/9780203448946-22
  37. Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research. Kluwer. https://doi.org/10.1007/978-94-011-3168-1
  38. Troelstra, A. S. (2011). History of constructivism in the 20th century. In J. Kennedy & R. Kossak (Eds.), Set theory, arithmetic, and foundations of mathematics: Theorems, philosophies (pp. 150–179). Cambridge University Press. https://doi.org/10.1017/CBO9780511910616.009
  39. Troelstra, A. S., & Dalen, D. van. (1988). Constructivism in mathematics: An introduction. North-Holland.